Abstract

In this study, a pot experiment was designed to elucidate the effect of varying dosages of silicon (Si) fertilizer application in Si-deficient and enriched paddy soils on rice phytolith and carbon (C) bio-sequestration within phytoliths (PhytOC). The maximum Si fertilizer dosage treatment (XG3) in the Si-deficit paddy soil resulted in an increase in the rice phytolith content by 100.77% in the stem, 29.46% in the sheath and 36.84% in the leaf compared to treatment without Si fertilizer treatment (CK). However, the maximum Si fertilizer dosage treatment (WG3) in the Si -enriched soil increased the rice phytolith content by only 32.83% in the stem, 27.01% in the sheath and 32.06% in the leaf. Overall, Si fertilizer application significantly (p < 0.05) increased the content of the rice phytoliths in the stem, leaf and sheath in both the Si-deficient and enriched paddy soils, and the statistical results showed a positive correlation between the amount of Si fertilizer applied and the rice phytolith content, with correlation coefficients of 0.998 (p < 0.01) in the Si-deficient soil and 0.952 (p < 0.05) in the Si-enriched soil. In addition, the existence of phytoliths in the stem, leaf, and sheath of rice and its content in the Si-enriched soil were markedly higher than that in the Si-deficient soil. Therefore, Si fertilizer application helped to improve the phytolith content of the rice plant.

Highlights

  • Phytoliths derive from bio-mineralization in plants and usually take the shape of the plant cell or cell spatium where Si is deposited

  • With an increase in the application of the Si fertilizer dosages, the content of the phytoliths in the rice organs was increased in the Si-deficient red paddy soil (Table 2)

  • We showed that Si fertilizer application could promote the phytolith content and biomass of rice plants and further improve the estimated PhytOC

Read more

Summary

Introduction

Phytoliths derive from bio-mineralization in plants and usually take the shape of the plant cell or cell spatium where Si is deposited. Most of the Si taken up by rice is removed from a field when the rice straw is removed, and the loss of SiO2 is from 75 to 130 kg hm−2 every production season (Zhang et al, 2014). Such large losses of Si make it difficult to maintain the balance of Si in soils from natural weathering alone. 73% of paddy soils in Zhejiang Province and approximately 60% in Henan Province are Si-deficient (Cai, 2015). Some research has shown that Si fertilizer application can significantly increase the biomass of rice (Wu et al, 2014; Zhang et al, 2014)

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.