Abstract

Field crops are subjected to numerous inconsiderate climatic hazards that negatively affect physiological processes, growth and yield. Drought is one of the major abiotic factors that limits the agricultural productivity especially in the arid and semi-arid areas of the globe. Silicon (Si) is a naturally occurring beneficial nutrient which modulates plant growth and development events and has been known to improve the crop tolerance to abiotic stresses. With the objective to investigate the role of silicon nutrition on maize hybrids under limited moisture supply, a two year field study was conducted during 2010–11 at Post Graduate Research Station (PARS), University of Agriculture Faisalabad, Pakistan. We evaluated growth of two maize hybrids P-33H25 and FH-810 under well watered (100% field capacity) and water deficit situation (60% field capacity) as affected by Si application. Silicon was added in soil @ 100 mg/kg using Calcium Silicate as source. Water deficit condition significantly reduced agro-morphological and physiological attributes of maize plants. Silicon application significantly increased the plant height, leaf area index, yield and related attributes along with improvement in photosynthetic rate, leaf water status and osmotic adjustment under limited moisture supply. It was concluded that silicon application to droughtstressed maize enhanced its growth and yield owing to improved photosynthetic rate, higher osmotic adjustment, increased water status and lowered transpiration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.