Abstract

We report a new nanoscale antifuse featuring low-power and high-programming speed, by employing silicon carbide (SiC) nanoelectromechanical systems (NEMS). We show that the SiC NEMS antifuses can enable ultralow-power one-time-programmable (OTP) field-programmable gate arrays (FPGAs) with characteristics promising for security-sensitive and harsh-environment applications. The SiC NEMS antifuses offer minimal leakage, low-programming voltage (down to $\sim 1.5$ V), ideally abrupt transient, high on/off ratios ( $>10^{7}$ ) and high-current carrying ability ( $>10^{6}$ A/cm $^{2}$ ), and very small footprints ( $\sim 1~\mu \text{m}^{2}$ to $\sim 0.1~\mu \text{m}^{2}$ per device). We further describe new designs of antifuses, simulate FPGA benchmarking circuits based on experimentally demonstrated practical NEMS antifuses, and compare their advantageous performance with state-of-the-art conventional antifuse FPGAs. We also demonstrate a SiC NEMS antifuse-based OTP memory cell with a read margin of $>10^{6}$ .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.