Abstract
Low-loss arrayed waveguide gratings (AWGs) are demonstrated at a 2.0-μm wavelength. These devices promote rapidly developing photonic applications, supported by the recent development of mid-infrared lasers integrated on silicon (Si). Multi-spectral photonic integrated circuits at 2.0-μm are envisioned since the AWGs are fabricated with the 500-nm-thick Si-on-insulator platform compatible with recently demonstrated lasers and semiconductor optical amplifiers on Si. Characterization with the AWG-ring method improves the on-chip transmission uncertainty to ∼6% compared to the conventional method with an uncertainty of ∼53%. Channel losses of ∼2.4 dB are found, with -31 dB crosstalk per channel. Fully integrated multi-spectral sources at 2.0μm with pump lasers, low-loss multiplexers, and an output amplifier are now feasible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.