Abstract

Abstract Late-stage pseudomorphous and perimorphous replacement of euhedral baryte and, to a lesser extent, fluorite and calcite by quartz is a common phenomenon in hydrothermal vein-type deposits. As a consequence of silicification, the primary mineral assemblage might be substantially altered, and therefore this process has a severe negative impact on the economic potential of mineral resources. Although these replacement textures are often reported and have a significant economic importance in mines producing baryte or fluorite of chemical grade, the process that causes this silicification is surprisingly poorly understood. In the present contribution, more than 40 Jurassic–Cretaceous and post-Cretaceous hydrothermal veins from the Schwarzwald mining district, including replacement textures of primary euhedral baryte, fluorite, and calcite, were investigated with respect to their macro- and microscopic textures. It appears that baryte is favorably replaced by pseudomorphs (bladed quartz), while fluorite and calcite are typically replaced by perimorphs. The textures indicate that the mode of replacement of the primary minerals happens continuously and after the initial vein formation. By combining these textural observations with calculated mineral solubilities, a detailed geochemical model has been developed. Existing fluid inclusion data indicate that substantial cooling of the hydrothermal solutions occurs after primary mineral formation. The calculated cooling path reveals opposing solubilities of quartz and the other gangue minerals (baryte, fluorite, and calcite) with decreasing temperature and explains the observed dissolution and precipitation textures. Furthermore, differences in temperature-solubility systematics between baryte on the one hand and fluorite and calcite on the other are responsible for the differences observed in the textures. This agrees with the occurrence of late-stage, low-temperature baryte crystals overgrowing primary baryte assemblages. Conversely, analogous late-stage calcite and fluorite assemblages are only rarely observed. In summary, silicification is a typical cooling effect in various hydrothermal vein-type deposits, but affects different gangue minerals in different ways depending on their temperature-dependent solubility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.