Abstract

The paper deals with the effect of geometrical confinement on the structuring of Silica nanoparticle suspensions in thin films. The confinement is produced by a Colloidal Probe AFM. Approaching of the two outer surface leads to oscillatory forces. The force profile reflects the pair correlation function and its period the average distance between the nanoparticles under confinement. The nanoparticle structuring is compared to the particle distribution in bulk by small angle X-ray scattering (SAXS). The SAXS structure factor which presents the Fourier transform of the pair correlation function gives the same interparticle distance for the bulk as the oscillation period of the AFM force curves. The distance scales with particle number density ρ as ρ-1/3 and is very robust against different suspension parameters (nanoparticle size, ionic strength) and parameters of the outer surfaces (surface potential, roughness and elasticity).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.