Abstract

The diagenesis and deformation processes of ribbon cherts embedded in a Jurassic accretionary complex, central Japan, were investigated in detail to gain a better understanding of the mechanical behavior of the plate boundary at depth in cold subduction zones. The analyzed cherts record two stages of deformation: (1) map- to outcrop-scale ductile folding, and (2) subsequent brittle faulting. The ductile deformation was facilitated by silica dehydration–precipitation, and is represented by multiple phases of vein networks. The folds are cut by brittle faults, indicating lithification and the concurrent mechanical transition from ductile to brittle behavior. Slip zones along the faults are typically filled with brecciated chert in a chlorite matrix. Geothermometry analysis of the matrix chlorite suggests that faulting occurred following the completion of opal-CT to quartz transition reaction. This is also confirmed by the kinetic simulation of silica conversion reactions. The results suggest that ductile deformation of thick pelagic deposits with abundant fluids results in an aseismic plate boundary, whereas chemical diagenesis of the deposits, producing crystalline cherts, results in interplate coupling in cold subduction zones such as the Japan Trench.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.