Abstract

AbstractBiomineralization can afford crystal frameworks of great diversity and utmost complexity, frequently featuring hierarchical structures and morphologies beyond any crystallographic restrictions. The formation of such architectures is usually directed by organic molecules or matrices, which modify crystallization in a deliberate manner. Their influence often leads to sinuous forms, which, by intuition, suggest the presence of life and distinguish these minerals from their inanimate, mostly euhedral counterparts. However, such a strict distinction does not hold. In fact, smooth curvature and higher‐order structuring can occur also in purely inorganic environments: simply by precipitating alkaline earth carbonates in silica‐containing media, aggregates of highly oriented carbonate nanocrystals can be obtained that display striking noncrystallographic morphologies such as regular helicoids. Thereby, individual crystallites as well as the entire assembly are sheathed by amorphous silica, thus giving a composite material with various levels of hierarchy. These exceptional forms, called “silica biomorphs”, self‐assemble through a bottom‐up process, which relies on local variations in the conditions and is driven by a pH‐based coupling of the carbonate and silicate. Here, we review recent progress in the field of silica biomorphs with particular focus on their mechanism of formation, provide insight into structural details at different length scales, and discuss implications of these biomimetic crystal aggregates for both primitive life detection and materials science.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.