Abstract

Organic-inorganic nanoporous silica sol-gel glasses constitute the ideal support for protein bio-encapsulation and to study the different factors influencing the protein folding process in a crowded environment. Due to the facile silica surface modifications with desired Si-substituted organic groups from organosilanes precursors, organically modified 'wet-aged' silica-based glasses obtained via the sol-gel process, can be used as host materials to mimic the crowded environment of the proteins and cells that can be found in the cytoplasm for instance. Numerous studies to date showed that silica-based nanoporous glasses can stabilise bioactive proteins. However, it is important to know about the different factors affecting the protein stability and therefore its properly-folded state. In this review, we report the recent results on the influence of different parameters (such as surface hydration, hydrophobicity, solute effects, thermal stability, porosity, macromolecular crowding) on the protein conformation based on the design and the characterisation of nanoporous silica-based materials containing different functional groups (e.g., hydrophobic alkyl, phosphate and fluorinated groups). The enhancement of the protein folding owing to the physical properties and microstructure of the host matrix induced by the nature of the functional groups and the siloxane network play a major role on the protein biological activity and therefore to the development efficient bionanodevices such as biocatalysts, sensors, drug delivery systems or implanted devices. It is also the opportunity to understand the different factors influencing the protein misfolding that are the cause of devastating diseases such as Alzheimer or Huntington.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.