Abstract

BackgroundVarious studies have shown that circular RNA (circRNA) plays a pivotal role in chronic obstructive pulmonary disease (COPD). We aimed to determine the role of circRNA BBS9 in COPD progression.MethodsReal-time quantitative reverse transcription PCR (qRT-PCR) was performed to determine the levels and the linkages of circRNA BBS9, miRNA-103a-3p, and BCL2L13 in cigarette smoke extract (CSE)-treated human pulmonary microvascular endothelial cells (HPMECs). The target binding sites of circRNA BBS9 and miRNA-103a-3p were predicted using the starBase database, and the TargetScan algorithm was used to forecast the potential binding sites of BCL2L13 and miRNA-103a-3p, which were verified using a dual-luciferase reporter assay. An flow cytometry (FCM) assay was performed to determine the rate of apoptosis of HPMECs. Caspase3 activity was determined using a Caspase3 assay kit. The apoptosis-related protein bands were determined by western blotting.ResultsThe level of circRNA BBS9 increased in 1% CSE-induced cells, and silencing of circRNA BBS9 decreased the ratio of apoptotic cells among the 1% CSE-induced HPMECs. The results of dual-luciferase reporter assays showed that miRNA-103a-3p associates with circRNA BBS9. miRNA-103a-3p was downregulated in COPD, and upregulation of miRNA-103a-3p inhibited apoptosis in CSE-stimulated cells. Moreover, BCL2L13 was found to act downstream of miRNA-103a-3p. Silencing of miRNA-103a-3p reversed the inhibitory effect of circRNA BBS9-siRNA. The effects of the miRNA-103a-3p mimic were reversed by the BCL2L13-plasmid.ConclusioncircRNA BBS9 is involved in COPD development as it inhibits the functioning of miRNA-103a-3p. Our results suggest that circRNA BBS9 may act as a novel target for treating COPD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.