Abstract

CoCrFeNi high-entropy alloy (HEA) exhibits excellent mechanical properties but relatively poor wear resistance. In particular, when the load reaches a certain level and the deformation mechanism of the CoCrFeNi HEA changes, the formation of shear bands leads to a significant increase in wear rate. Although numerous studies have been conducted on alloying strategies to improve the wear resistance of alloys, there is still limited research on the influence of deformation mechanism adjustment on wear resistance. Therefore, in order to fill this research gap, this study aims to use boron doping to regulate the deformation mechanism and successfully improve the wear resistance of CoCrFeNi HEA by 35 times. By observing the subsurface microstructure, the mechanism behind the significant improvement in wear resistance was further revealed. The results indicate that the reduction of shear bands and the formation of nanostructured mixed layers significantly improve wear resistance. The proposed strategy of boron doping to change the deformation mechanism and improve wear resistance is expected to provide new enlightenment for the development of wear-resistant HEAs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.