Abstract

LiCoO2 in the commercial lithium ion batteries has been suffering from its poor cycling performance at high cutoff voltages. In this study, we employ an atomic layer deposition (ALD) technique to surface-modify a LiCoO2 material with various thickness-controlled metal oxide (TiO2, ZrO2 and Al2O3) coatings to improve its battery performance. The effects of the metal oxide coatings on the electrochemical performance of LiCoO2 electrode are studied in detail. It is demonstrated that a uniform and dense coating via the ALD route on LiCoO2 powder can lower the battery performance due to an obvious decrease in lithium diffusion and electron transport with the coating layers. In contrast, it is revealed that a direct coating on prefabricated LiCoO2 electrodes performs much better than a coating on LiCoO2 powders. It is further disclosed that the improved electrochemical performance of coated LiCoO2 electrode is highly dependent on the coating materials. Of the three coating materials, the Al2O3 coating results in the best cycling stability while the ZrO2 coating contributes to the best rate capability. It is thus suggested that the coating materials are functionally specific, and for the best improvement of a cathode, a particular coating material should be sought.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.