Abstract
The influence of small amounts of water dissolved in 1-hexyl-3-methylimidazolium chloride ([C(6)mim][Cl]) on the composition of the surface of the ionic liquid is investigated with the depth profiling technique neutral impact collision ion scattering spectroscopy. The concentration depth profiles of the elements in the sample were determined at three different water concentrations and show that small amounts of water affect the charge distribution in the ionic liquid along the surface normal. At low water concentrations (2500 ppm) the cation shows a strong presence at the surface with the alkyl chains oriented towards the gas phase, followed by a layer of anions below the alkyl chains of the cation. At higher water content (6000 to 10,000 ppm) the chloride anion shows an increased concentration at the ionic liquid surface while the alkyl chains move towards the bulk showing that the surface charge becomes more negative with increasing water content. The effect is attributed to the influence of water on the hydrogen bonding network in the ionic liquid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.