Abstract

When subjected to permanent ground deformations, buried pipelines may fail by local buckling (wrinkling under compression) or by tensile rupture. The initial assessment of the effects of predicted seismic fault movements on the buried pipeline is performed using analytical approaches by Newmark-Hall and Kennedy et al, which is restricted to cases when the pipeline is put into tension. Further analysis is then undertaken using finite element methods to assess the elasto-plastic response of the pipeline response to the fault movements, particularly the compressive strain limits. The finite element model is set up to account for the geometric and material non-linear parameters. The pipe material behaviour is generally assumed to have a smooth strain hardening (roundhouse) post-yield behaviour and defined using the Ramberg-Osgood stressstrain curve definition with the plasticity modelled using incremental theory with a von Mises yield surface, associated flow rule and isotropic hardening. However, material tests on seamless pipes (X-grade) show that the stress-strain curve typically displays a Lu¨der’s plateau behaviour (yield point elongation) in the post-yield state. The Lu¨der’s plateau curve is considered conservative for pipeline design and could have a significant impact on strain-based integrity assessment. This paper compares the pipeline response from a roundhouse stress-strain curve with that obtained from a pipe material exhibiting Lu¨der’s plateau behaviour and also examines the implications of a Lu¨der’s plateau for pipeline structural integrity assessments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.