Abstract

We use a many-body rate-equation approach to calculate the thermopower of a quantum dot in the presence of an exchange interaction. At temperatures much smaller than the single-particle level spacing, the known quantum jumps (discontinuities) in the thermopower are split by the exchange interaction. The origin and nature of the splitting are elucidated with a simple physical argument based on the nature of the intermediate excited state in the sequential tunneling approach. We show that this splitting is sensitive to the number parity of electrons in the dot and the dot's ground-state spin. These effects are suppressed when cotunneling dominates the electrical and thermal conductances. We calculate the thermopower in the presence of elastic cotunneling, and show that some signatures of exchange correlations should still be observed with current experimental methods. In particular, we propose a method to determine the strength of the exchange interaction from measurements of the thermopower.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.