Abstract

We discuss typical experimental signatures for the Bose-Einstein condensation (BEC) of an ultracold Bose gas in an inhomogeneous optical lattice at finite temperature. Applying the Hartree-Fock-Bogoliubov-Popov formalism, we calculate quantities such as the momentum-space density distribution, visibility and peak width as the system is tuned through the superfluid to normal phase transition. Different from previous studies, we consider systems with fixed total particle number, which is of direct experimental relevance. We show that the onset of BEC is accompanied by sharp features in all these signatures, which can be probed via typical time-of-flight imaging techniques. In particular, we find a two-platform structure in the peak width across the phase transition. We show that the onset of condensation is related to the emergence of the higher platform, which can be used as an effective experimental signature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.