Abstract

We compared the signal transduction pathways activated by stromal cell-derived factor-1 (CXCL12) chemokine in two different cell systems: primary cultures of rat cerebellar granule neurons (CGN) and human neuroepithelioma CHP100 cells. Both cell types express functional CXC chemokine receptor 4 (CXCR4), which is coupled both to extracellular signal-regulated kinase (ERK) and Akt phosphorylation pathways. The activation of ERK shows different dependency on the phosphatidylinositol 3-kinase (PI3-K) pathway and different sensitivity to pertussis toxin (PTX) treatment, indicative of coupling to different G proteins in the two cell systems considered. We demonstrate that the inhibition of either the ERK kinase or the PI3-K pathways blocks the CXCL12 induced-chemotaxis in CHP100 cells; while only PI3-K activity is stringently necessary for CGN migration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.