Abstract

Regulation of mRNA decay rates appears to be an important control point in determining the abundance of gene transcripts. Rapid change in decay rates of mRNAs could provide prompt responses of the plants to environmental fluctuations. SOS1 is a plasma-membrane Na+/H+ antiporter crucial for salt tolerance in Arabidopsis. In our recent paper in Plant Journal, we have shown that SOS1 mRNA is inherently instable at normal growth conditions, but its stability is substantially elevated by salt and oxidative stress treatments. Salt stress-induced SOS1 mRNA stability is mediated by reactive oxygen species (ROS) produced, at least in part, through NADPH oxidases. We proposed a hypothetical model for the signaling pathway controlling SOS1 mRNA stability. In this addendum, we discuss the possible involvement of other components in conferring inherent instability and stress-induced stability of SOS1 mRNA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.