Abstract

The mechanism of signal transmission, conversion and multiplication at molecular level has been of great interest lately, due to its wide applications in nanoscience and nanotechnology. The interferences between authentic signals and thermal noises at the nanoscale make it difficult for molecular signal transduction. Here we review some of our recent progress on the signal transduction mediated by water and other polar molecules confined in nanochannels, such as Y-shaped carbon nanotubes. We also explore possible future directions in this emerging field. These studies on molecular signal conduction might have significance in future designs and applications of nanoscale electronic devices, and might also provide useful insights for a better understanding of signal conduction in both physical and biological systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.