Abstract

An understanding of how an extracellular stimulus causes changes in cell growth is emerging from the study of four signal transduction pathways in Saccharomyces cerevisiae: the pheromone-response, pseudohyphal differentiation, osmolarity-response, and protein kinase C activated pathways. Each of these pathways contains at its core a distinct mitogen-activated protein kinase cascade. Biochemical and molecular studies have determined the functional order of the kinases in the pheromone-response pathway and have suggested that they are organized into a complex by a protein scaffold. The cell surface sensor system for the osmolarity-response pathway has been identified. It shows striking similarity to bacterial two-component sensor-responder systems. Finally, components that integrate information from these pathways and communicate it to cell growth regulators have been revealed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.