Abstract

Despite the growing adoption of wearable photoplethysmography (PPG) devices in personal health management, their measurement accuracy remains limited due to susceptibility to noise. This paper proposes a novel signal completion technique using generative adversarial networks that ensures both global and local consistency. Our approach innovatively addresses both short- and long-term PPG variations to restore waveforms while maintaining waveform consistency within and between pulses. We evaluated our model by removing up to 50 % of segments from segmented PPG waveforms and comparing the original and reconstructed waveforms, including systolic peak information. The results demonstrate that our method accurately reconstructs waveforms with high fidelity, producing natural and seamless transitions without discontinuities at reconstructed boundaries. Additionally, the reconstructed waveforms preserve typical PPG shapes with minimal distortion, underscoring the effectiveness and novelty of our technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.