Abstract

Recent laboratory and field studies suggest that Mn(lll) forms persistent aqueous complexes with high-affinity ligands. Aqueous Mn(lll) species thus may play a significant but largely unexplored role in biogeochemical processes. One formation mechanism for these species is the dissolution of Mn(lll)-bearing minerals. To investigate this mechanism, we measured the steady-state dissolution rates of manganite (gamma-MnOOH) in the presence of desferrioxamine B (DFOB), a common trihydroxamate siderophore. We find that DFOB dissolves manganite by both reductive and nonreductive reaction pathways. For pH > 6.5, a nonreductive ligand-promoted reaction is the dominant dissolution pathway, with a steady-state dissolution rate proportional to the surface concentration of DFOB. In the absence of reductants, the aqueous Mn(lIl)HDFOB+ complex resulting from dissolution is stable for at least several weeks at circumneutral to alkaline pH and at 25 degrees C. For pH < 6.5, Mn2+ is the dominant aqueous species resulting from manganite dissolution, implicating a reductive dissolution pathway. These results have important implications for the biogeochemical cycling of both manganese and siderophores--as well as Fe(lll)--in natural waters and soils.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.