Abstract
Peptide hydrogens that are exposed to solvent in protein X-ray structures exhibit a billion-fold range in hydroxide-catalyzed exchange rates, and these rates have previously been shown to be predictable by continuum dielectric methods to within a factor of 7, based on single protein conformations. When using a protein coil library to model the Boltzmann-weighted conformational distribution for the various N-acetyl-[X-Ala]-N-methylamides and N-acetyl-[Ala-Y]-N-methylamides, the acidity of the central amide in the individual conformers of each peptide spans nearly a million-fold range. Nevertheless, population averaging of these conformer acidities predicts the standard sidechain-dependent hydrogen exchange correction factors for nonpolar model peptides to within a factor of 30% (10 0.11) with a correlation coefficient r = 0.91. Comparison with the analogous continuum dielectric calculations for the other N-acetyl-[X-Y]-N-methylamides indicates that deviations from the isolated residue hypothesis of classical polymer theory predict appreciable errors in the exchange rates for conformationally disordered peptides when the standard sidechain-dependent hydrogen exchange rate correction factors are assumed to be independently additive. Although electronic polarizability generally dominates the dielectric shielding for the ∼ 10 ps lifetime of peptide ionization, evidence is presented for modest contributions from rapid intrarotamer conformational reorganization of Asn and Gln sidechains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.