Abstract

Cell surface carbohydrate antigens sialyl Lewis X (sLeX) and Lewis Y (LeY) are paramount glycoconjugates and are abundantly expressed in the receptive endometrium. Furthermore, among the important biological functions of both antigens is their role in leukocytes adhesion and extravasation. Interleukin-1 beta (IL-1β) is involved in the process of human embryo implantation and placenta development. Here, we used an in vitro model to investigate whether sLeX and LeY are playing a role in the embryo implantation process mediated by IL-1β. Our results are showing that the expression of cell surface sLeX was enhanced in endometrial RL95-2 cells after exposure to IL-1β. RT-qPCR detection indicated that the transcript level of glycosyltransferase gene fucosyltransferase 3 (FUT3) was significantly elevated and that of FUT4/7 and ST3 beta-galactoside alpha-2,3-sialyltransferase 3/4 (ST3GAL3/4) were decreased by treatment with IL-1β. Modulatory role of glycosyltransferase FUT3 on sLeX biosynthesis was determined by FUT3 siRNA transfection in RL95-2 cells. Results showed that the expression level of sLeX was suppressed, but no change was observed in regard to LeY. Moreover, IL-1β promoted the HTR-8/SVneo trophoblast spheroids attachment to the RL95-2 endometrial monolayer, which was partially blocked by anti-sLeX antibody and FUT3 knockdown. Gene expression analysis of the RNA-seq transcriptome data from human secretory endometrium demonstrated a significantly higher level of FUT3 in the mid-secretory phase compared to the early secretory phase, which was correlated with the expression of IL1B. In summary, the inflammatory microenvironment at the fetomaternal interface can regulate the glycosylation pattern of endometrial cells at the time of implantation. SLeX can be significantly induced by IL-1β via increasing FUT3 expression, which facilitates the trophoblast adhesion during embryo implantation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.