Abstract
Porous ceramic membranes with high mechanical strength are suitable for oil-water emulsion separation. Nonetheless, it is difficult to prepare ceramic membranes with a small pore size and a good antifouling ability. In this work, SiO2 nanoparticles were used to modify β-SiAlON ceramic membranes, which were successfully utilized to remove small oil droplets from oil-water emulsion. The modified membranes displayed a narrow pore size (the average pore size decreased from 1.05 µm, in the unmodified membrane, to 0.65 µm), and gas and water fluxes which are suitable for oil-water separation. Oil rejection rate was always higher than 90% under various pressures (1.0–2.0 bar) and flow velocities (1.0−3.0 L min−1) tested, which is considerably higher (60%) than the rejection rate of the unmodified membrane (which was 39.8%). Moreover, the modified membranes exhibited a good antifouling ability, since flux declined by only 7.0% after three recoveries via a simple ultrasonic treatment, over a total running period of 10 h. Accordingly, the produced membranes can be qualified for further consideration in oily wastewater treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.