Abstract

A quantum well infrared photodetector consisting of self-assembled type II SiGe/Si based quantum wells operating around 1.55μm at room temperature has been investigated. The Si1−yGey/Si/Si1−xGex/Si/Si1−yGey stack results in a ‘W’ like profiles of the conduction and valence bands strain-compensated in the two low absorption windows of silica fibers infrared photodetectors have been proposed. Such computations have been used for the study of the p-i-n infrared photodetectors operating, around (1.3–1.55μm) at room temperature. The quantum transport properties of electrons and holes were approved with Schrödinger and kinetic equations resolved self-consistently with the Poisson equation. The theoretical performances of the photodetector were carried out such as the dark current mechanisms, the temperature dependence of normalized dark current and the zero-bias resistance area product (R0A).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.