Abstract

Enhanced Stoke Raman scattering of large-area vertically aligned Si nanorod surface etched by metal-particle-catalytic is investigated. By enlarging the surface area with lengthening Si nanorods, the linear enhancement on Stoke Raman scattering intensity at 520 cm(-1) is modeled to show well correlation with increasing quantity of surface Si dangling bonds. With Si nanorod length increasing from 0.19 to 2.73 μm, the Raman peaks of the as-etched and oxidized samples gradually shift from -4 cm(-1) and from -4.5 cm(-1) associated with their linewidth broadening from 3 to 9 cm(-1) and from 7 to 18 cm(-1), respectively. The peak intensity of Raman scattering signal from Si nanorod could be enhanced with the increase of interaction area as the number of phonon mode directly corresponds to the tetrahedrally coordinated Si vibrations in the bulk crystal lattice. The asymmetric linewidth broadening and corresponding Raman peak shift is affected by the strained Si nanorod surface caused by etching and the crystal quality. Fourier transform infrared spectroscopy corroborates the dependency between nanorod length and Si-O-Si stretching mode absorption (at 1097 cm(-1)) on oxidized Si nanorod surface, elucidating the increased transformation of surface dangling bonds to Si-O-Si bonds for passivating Si nanorods and attenuating Stoke Raman scattering after oxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.