Abstract

Chemosensory proteins (CSPs) have been predicted to be involved in development; however, direct evidence for their involvement is lacking, and genetic basis is largely unknown. To determine the function of the chemosensory protein 9 (Si-CSP9) gene in Solenopsis invicta, we used RNA interference to silence Si-CSP9 in 3rd-instar larvae. The 3rd-instar larvae failed to shed their cuticle after being fed Si-CSP9-directed siRNA, and expression profiling of RNAi-treated and untreated control larvae showed that 375 genes were differentially expressed. Pathway enrichment analysis revealed that 4 pathways associated with larval development were significantly enriched. Blast analysis revealed that one fatty acid amide hydrolase (FAAH) gene was up-regulated and 4 fatty acid synthase (FAT) genes and one protein kinase DC2 gene (PKA) were down-regulated in the enriched pathways. Significantly higher expression of these genes was found in 4th-instar larvae, and Pearson correlation analysis of the expression patterns revealed significant relationships among Si-CSP9, PKA, FAAH, and FAT1-4. Moreover, we confirmed that expression levels of Si-CSP9, FAAH, and FAT1-4 were significantly reduced and that the development of 3rd-instar larvae was halted with PKA silencing. These results suggest that Si-CSP9 and PKA may be involved in the network that contributes to development of 3rd-instar larvae.

Highlights

  • Si-CSP9 regulates the integument and moulting process of larvae in the red imported fire ant, Solenopsis invicta

  • We confirmed that expression levels of Si-CSP9, fatty acid amide hydrolase (FAAH), and FAT1-4 were significantly reduced and that the development of 3rd-instar larvae was halted with protein kinase DC2 gene (PKA) silencing

  • These results suggest that Si-CSP9 and PKA may be involved in the network that contributes to development of 3rd-instar larvae

Read more

Summary

Introduction

Si-CSP9 regulates the integument and moulting process of larvae in the red imported fire ant, Solenopsis invicta. To determine the function of the chemosensory protein 9 (Si-CSP9) gene in Solenopsis invicta, we used RNA interference to silence Si-CSP9 in 3rd-instar larvae. Higher expression of these genes was found in 4th-instar larvae, and Pearson correlation analysis of the expression patterns revealed significant relationships among Si-CSP9, PKA, FAAH, and FAT1-4. We confirmed that expression levels of Si-CSP9, FAAH, and FAT1-4 were significantly reduced and that the development of 3rd-instar larvae was halted with PKA silencing. These results suggest that Si-CSP9 and PKA may be involved in the network that contributes to development of 3rd-instar larvae. Our hypothesis is that Si-CSP9 functions during the integument and moulting process in S. invicta larvae

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.