Abstract
The correct and efficient estimation of memory parameters in a stationary Gaussian processes is an important issue, since otherwise, forecasts based on the resulting time series would be misleading. On the other hand, if the memory parameters are suspected to fall in a smaller subspace through some hypothesis restrictions, it becomes a hard decision whether to use estimators based on the restricted spaces or to use unrestricted estimators over the full parameter space. In this article, we propose James-Stein-type estimators of the memory parameters of a stationary Gaussian times series process, which can efficiently incorporate the hypothetical restrictions. We show theoretically that the proposed estimators are more efficient than the usual unrestricted maximum likelihood estimators over the entire parameter space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.