Abstract
To investigate the effects of protein tyrosine phosphatase-SHP2 and dual-specificity MAPK phosphatase-MKP5 on the activation of MAPKs and cell invasion induced by P2Y purinergic receptor in human prostate cancer cell lines with different metastatic potentials. The wide type (-wt) SHP2, mutant type (-cs) SHP2 and wide type (-wt) MKP5 cDNA expression vectors were constructed and stably transfected into 1E8 cells (highly metastatic) and/or 2B4 cells (non-metastatic). The tyrosine phosphorylation of SHP2 was examined by immunoprecipitation. The activation of ERK1/2 and p38 induced by P2Y receptor agonist ATP was analyzed by Western blot with phospho-specific antibodies against the dually phosphorylated, active forms of ERK1/2 and p38. The in-vitro invasive ability through Matrigel was measured by boyden-chamber assay. ATP induced significant SHP2 phosphorylation, which was stronger and lasted longer in 1E8 than in 2B4. SHP2-wt enhanced the ERK1/2 activation induced by ATP in 2B4 cells, while SHP2-cs delayed and decreased this effect in 1E8 cells. Both SHP2-wt and SHP2-cs had no obvious influence on p38 activation. ATP stimulated cell invasion of both 1E8 and 2B4, while transfection of SHP2-wt into 2B4 cells further increased the invasive-stimulating ability of ATP (18.7% increase compared with ATP treatment alone). Transfection of SHP2-cs into 1E8 cells, however, antagonized the invasive-stimulating ability of ATP (40.9% decrease compared with ATP treated group). Up-regulation of MKP5-wt inhibited phosphorylation of p38 by ATP and reduced cell invasion stimulated by ATP (22.4% and 28.7% decrease compared with ATP treated group of 1E8 and 2B4, respectively). Both SHP2 and MKP5 play some roles in P2Y receptor-mediated activation of MEK/ERK, p38 signaling pathways and prostate cancer invasion. SHP2 positively regulates ERK activation and prostate cancer invasion, whereas MKP5 inhibits the invasion by suppressing p38 activation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.