Abstract
BackgroundRoofers are at increased risk for various malignancies and their occupational exposures to polycyclic aromatic hydrocarbons (PAHs) have been considered as important risk factors. The overall goal of this project was to investigate the usefulness of phosphorylated histone H2AX (γH2AX) as a short-term biomarker of DNA damage among roofers.MethodsBlood, urine, and dermal wipe samples were collected from 20 roofers who work with hot asphalt before and after 6 h of work on Monday and Thursday of the same week (4 sampling periods). Particle-bound and gas-phase PAHs were collected using personal monitors during work hours. γH2AX was quantified in peripheral lymphocytes using flow cytometry and 8-hydroxy-2-deoxyguanosine (8-OHdG) was assessed in urine using ELISA. General linear mixed models were used to evaluate associations between DNA damage and possible predictors (such as sampling period, exposure levels, work- and life-style factors). Differences in mean biomarker and DNA damage levels were tested via ANOVA contrasts.ResultsExposure measurements did not show an association with any of the urinary biomarkers or the measures of DNA damage. Naphthalene was the most abundant PAH in gas-phase, while benzo(e)pyrene was the most abundant particle-bound PAH. Post-shift levels of γH2AX and 8-OHdG were higher on both study days, when compared to pre-shift levels. Cigarette smoking was a predictor of γH2AX and urinary creatinine was a predictor of urinary 8-OHdG. Between-subject variance to total variance ratio was 35.3 % for γH2ax and 4.8 % for 8-OHdG.ConclusionγH2AX is a promising biomarker of DNA damage in occupational epidemiology studies. It has a lower within-subject variation than urinary 8-OHdG and can easily be detected in large scale groups. Future studies that explore the kinetics of H2AX phosphorylation in relation to chemical exposures may reveal the transient and persistent nature of this sensitive biomarker of early DNA damage.Electronic supplementary materialThe online version of this article (doi:10.1186/s12940-016-0182-4) contains supplementary material, which is available to authorized users.
Highlights
Roofers are at increased risk for various malignancies and their occupational exposures to polycyclic aromatic hydrocarbons (PAHs) have been considered as important risk factors
Our overall goal was to explore the usefulness of γH2AX as a possible marker of DNA damage in workers exposed to PAHs using a high throughput flow cytometry assay
One of our evaluation criteria was its association with exposure data, which we could not observe for γH2AX
Summary
Roofers are at increased risk for various malignancies and their occupational exposures to polycyclic aromatic hydrocarbons (PAHs) have been considered as important risk factors. Asphalt is a mixture of hundreds of different chemical compounds, containing some known human carcinogens such as benzo(a)pyrene (BaP), which can be absorbed through inhalation, dermal contact, or ingestion [15]. Accurate measurement of individual PAHs in air has been difficult due to the complexity of the mixtures and the sensitivity of some individual PAHs to environmental or analytical conditions [16, 17]. Studies monitoring exposures to high molecular weight PAHs have similar challenges, such as low levels of exposures, undetectable levels of biomarkers, complicated analytical techniques with low sensitivity, and weak correlations between exposure and biomarker levels [24,25,26,27]. We and others have previously proposed that urinary metabolites of the more volatile and abundant PAHs, such as naphthalene, could theoretically increase the sensitivity of the analytical procedures [27,28,29]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.