Abstract
Mitogenic stimuli present at the site of coronary arterial balloon injury contribute to the progression and development of a restenotic lesion, many signaling through a common pathway involving the small G protein p21(ras). Our aim was to demonstrate in biochemical studies that farnesyl protein transferase inhibitor III (FPTIII) is an inhibitor of p21(ras) processing and that when it is given locally in vivo at the site of coronary balloon injury in a porcine model, it can inhibit neointima formation. FPTIII (1 to 25 micromol/L) concentration-dependently reduced p21(ras) levels in porcine coronary artery smooth muscle cell membranes. FPTIII also prevented p42/p44 MAPK activation and DNA synthesis in response to platelet-derived growth factor in these cells at a concentration of 25 micromol/L. Application of 25 micromol/L FPTIII locally for 15 minutes to balloon-injured porcine coronary arteries in vivo prevented neointima formation assessed at 4 weeks, reduced proteoglycan deposition, and inhibited adventitial hypertrophy. Coronary arteries from FPTIII-treated pigs had no deterioration in contraction or in endothelium-dependent relaxation. The study demonstrates in the pig that short-term local delivery of inhibitors of p21(ras)-dependent mitogenic signal transduction prevents restenosis after balloon angioplasty.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.