Abstract

The objective was to investigate the nature and extent of short-term dynamic changes to dissolution within specific interactive mixtures following blending. Two micronized drugs, nitrazepam and flunitrazepam, were formulated into lactose-based interactive mixtures containing a micronized surfactant. The dissolution rate of the drugs decreased significantly over a period of days after preparation. The dissolution was modelled using a multi-exponential equation, allowing estimation of agglomeration and dissolution rate. From this model, decreasing dissolution rates were consistent with increasing agglomeration. Particle-sizing studies provided evidence of an increase in drug agglomerates over the same timescale. This is the first study to report short-term dissolution changes immediately following secondary processing. Several hypotheses are proposed for increases in agglomeration, which potentially relate to changes in surface charge, particle rearrangements, recrystallisation at surfaces and the role of moisture, although the role of mechanical processing on agglomerate behaviour remains poorly understood. The observations from this study may have wider implications, for dissolution and for other powder-based drug delivery systems which include interactive mixtures with fine powders. This study emphasizes the need for improved understanding if we are to implement a “Quality by Design” ethos to improve control and risk management over the performance and stability of these systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.