Abstract

This study aimed to determine the short-term effects of ambient temperature variations exposures on the incidence of preterm birth (PTB) for each single lag day (lag0 to lag6) and cumulative lag days (lag0-1 to lag0-6) up to a week before birth. To find relevant publications, online databases, including Web of Science, PubMed, and Scopus were searched with appropriate keywords and Mesh terms from their inception to October 25, 2023. Overall, the number of 39 observational studies with 12.5 million pregnant women and 700.000 cases of PTB met our eligibility criteria. The associations of temperature variations with the incidence of PTB were investigated with two different meta-analyses, including the percentile meta-analysis (comparing different percentiles (P1 to P99) with a referent percentile (P50)), and the linear meta-analysis (per 5 °C increment of the temperature levels). For the percentile meta-analysis, we observed both extreme cold (P1, only lag 0) and heat (P95 and P99 with the highest risk at lag1 and lag0-6) exposures can be significantly associated with a higher risk of PTB. The pooled RR (95 % CI) per 5 °C increase in the temperature levels at lag0-6 was estimated as 1.038 (1.018, 1.058) for the overall analysis. Subgroup analysis based on the season shows a significant association in the warm season (RR = 1.082 and 95 % CI = 1.036, 1.128) at all lag days but not the cold season. For the single lag day, we observed the risk of PTB is the highest at lag1 and decreased with moving to lag6. In sum, we suppose there is a nearly V-shape non-linear association between air temperature levels and the incidence of PTB with the linear relationship for each unit increase (also decrease) in the temperature levels above (also below) moderate temperature limits. Future studies should investigate possible association of occupational heat and cold exposure during pregnancy on the incidence of adverse birth outcomes such as PTB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.