Abstract
We consider the problem of preprocessing an n-vertex digraph with real edge weights so that subsequent queries for the shortest path or distance between any two vertices can be efficiently answered. We give algorithms that depend on the treewidth of the input graph. When the treewidth is a constant, our algorithms can answer distance queries in O(α(n)) time after O(n) preprocessing. This improves upon previously known results for the same problem. We also give a dynamic algorithm which, after a change in an edge weight, updates the data structure in time O(n β ), for any constant 0<Β<1. The above two algorithms are based on an algorithm of independent interest: computing a shortest path tree, or finding a negative cycle in linear time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.