Abstract
An elongation of the single-valued neutrosophic set is an interval-valued neutrosophic set. It has been demonstrated to deal indeterminacy in a decision-making problem. Real-world problems have some kind of uncertainty in nature and among them; one of the influential problems is solving the shortest path problem (SPP) in interconnections. In this contribution, we consider SPP through Bellman’s algorithm for a network using interval-valued neutrosophic numbers (IVNNs). We proposed a novel algorithm to obtain the neutrosophic shortest path between each pair of nodes. Length of all the edges is accredited an IVNN. Moreover, for the validation of the proposed algorithm, a numerical example has been offered. Also, a comparative analysis has been done with the existing methods which exhibit the advantages of the new algorithm.
Highlights
Introduction and review of the literatureA tool which represents the partnership or relationship function is called a Fuzzy Set (FS) and handles the real-world problems in which generally some type of uncertainty exists [1]
This concept was generalized by Atanassov [2] to intuitionistic fuzzy set (IFS) which is determined in terms of membership (MS) and non-membership (NMS) functions, the characteristic functions of the set
We describe the neutrosophic shortest path (NSP), where edge weights are represented by IVNS
Summary
A tool which represents the partnership or relationship function is called a Fuzzy Set (FS) and handles the real-world problems in which generally some type of uncertainty exists [1]. This concept was generalized by Atanassov [2] to intuitionistic fuzzy set (IFS) which is determined in terms of membership (MS) and non-membership (NMS) functions, the characteristic functions of the set. The IVNS [15] is a more general database to generalize the concept of different types of sets to express membership degrees’ truth, indeterminacy, and a false degree in terms of intervals. Several papers are published in the field of fuzzy and neutrosophic sets [46–62]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.