Abstract

A shortcut to adiabaticity is concerned with the fast and robust manipulation of the dynamics of a quantum system which reproduces the effect of an adiabatic process. In this work, we use the time-rescaling method to study the problem of speeding up the population inversion of a two-level quantum system, and the fidelity of the fast dynamics versus systematic errors in the control parameters. This approach enables the generation of shortcuts from a prescribed slow dynamics by simply rescaling the time variable of the quantum evolution operator. It requires no knowledge of the eigenvalues and eigenstates of the Hamiltonian and, in principle, no additional coupling fields. From a quantum thermodynamic viewpoint, we also demonstrate that the main properties of the distribution of work required to drive the system along the shortcuts are unchanged with respect to the reference (slow) protocol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.