Abstract
In this paper, our universe is regarded as a codimension-2 brane embedded in a noncompact six-dimensional Anti-de Sitter (AdS) spacetime. We derive the gravitational horizon radius on the brane under the low-energy approximation, which reflects how the extra dimensions cause the shortcut effect of gravitational waves (GWs). We also study the time delay between a GW signal and an electromagnetic (EM) wave signal in the low-redshift limit by combining with the joint observations of GW170817 and GRB 170817A, which gives an upper limit to the text {AdS}_{6} radius as ell ^{2}_{~} lesssim 3.84,text {Mpc}^{2}_{~}. For a high-redshift source, the time delay is converted into the discrepancy between the source redshift derived from the GW signal and the one derived from the EM counterpart. It is found that if one expects to detect the EM counterpart of a high-redshift GW event within a reasonable observation time, it requires a stronger constraint on the text {AdS}_{6} radius. Our research shows that the text {AdS}_{6} radius should satisfy ell ^{2}_{~}lesssim 0.02,text {Mpc}^{2}_{~} for the DECIGO and BBO.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.