Abstract

Twenty-nine pigmented offspring of an innately esotropic female cat exhibited varying deficits in the number of binocular cells recorded in area 17 of the visual cortex as compared to 12 normal cats. Misalignment of the two eyes in these cats was found in the awake as well as in the paralysed state. Pupillography combined with measurements of visual disparity yielded abnormal esotropia of up to 8.4 degrees under paralysis, which corresponds to an abnormal convergence of the freely moving eyes of up to 14 degrees (average 7.4 degrees). In the majority of animals cortical binocularity was found reduced by the two eyes controlling independent sets of separate units (U-shaped ocular dominance distribution) whereas in 7 cats the reduction was due to a partial loss of one eye's influence. The proportion of monocular units correlated with the degree of crossover of the visual axes (r = 0.73). Anatomical investigation of the retinofugal projections revealed normal appearance in three previously recorded cats in which more than 50% of cortical units had been monocularly driven. The small angles of esotropia and the "normal" appearance of eye position judged by the pupillary positions in the orbit of these cats, might suggest that we found an animal model for microstrabismus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.