Abstract

Sarafotoxin-m (24 amino acids) from the venom of Atractaspis microlepidota microlepidota was the first long-sarafotoxin to be identified, while sarafotoxin-b (21 aa) is a short-sarafotoxin from Atractaspis engaddensis. Despite the presence of three additional C-terminus residues in sarafotoxin-m, these two peptides display a high sequence homology and share similar three-dimensional structures. However, unlike sarafotoxin-b, sarafotoxin-m shows a very low in vitro affinity for endothelin receptors, but still has a very high in vivo toxicity in mammals, similar to that of sarafotoxin-b. We have previously demonstrated, in vitro, the crucial role of the C-terminus extension in terms of pharmacological profiles and receptor affinities of long- versus short-sarafotoxins. One possible hypothesis to explain the high in vivo toxicity of sarafotoxin-m could be that its C-terminus extension is processed in vivo, resulting in short-like sarafotoxin. To address this possibility, we investigated, in the present study, the in vivo cardiovascular effects of sarafotoxin-b, sarafotoxin-m and sarafotoxin-m−Cter (sarafotoxin-m without the C -terminus extension). Male Wistar rats were anaesthetised and mechanically ventilated. Invasive haemodynamic measurements and echocardiographic measurements of left and right ventricular function were performed. The rats were divided into four groups that respectively received intravenous injections of: saline, sarafotoxin-b (one LD50), sarafotoxin-m (one LD50) or sarafotoxin-m−Cter (one LD50). All measurements were performed at baseline, at 1 minute (+1) and at 6 minutes (+6) after injection. Results: Sarafotoxin-b and sarafotoxin-m-Cter decreased cardiac output and impaired left ventricle systolic and diastolic function, whilst sarafotoxin-m decreased cardiac output, increased airway pressures and led to acute right ventricular dilatation associated with a decreased tricuspid annulus peak systolic velocity. Sarafotoxin-b and sarafotoxin-m−Cter appear to exert toxic effects via impairment of left ventricular function, whilst sarafotoxin-m increases airway pressures and impairs right ventricular function. These results do not support the hypothesis of an in vivo processing of long sarafotoxins.

Highlights

  • Sarafotoxins (SRTXs) extracted from the venom of snakes belonging to the genus Atractaspis and endothelins synthesised by mammalian endothelial cells belong to the same family of endothelin-like peptides [1]

  • Mean arterial pressure remained unchanged over time for SRTX-b and-m-Cter whereas the SRTX-m group showed a transient increase in mean arterial pressure after 1 minute (Fig 1)

  • Endothelin binding to ET-A and ET-B receptors of smooth muscle cells is responsible for vasoconstriction, while endothelin binding to ET-B receptors of endothelial cells is responsible for vasodilatation via NO and icosanoid release [20,21]

Read more

Summary

Introduction

Sarafotoxins (SRTXs) extracted from the venom of snakes belonging to the genus Atractaspis and endothelins synthesised by mammalian endothelial cells belong to the same family of endothelin-like peptides [1]. Human endothelin-1, as well as sarafotoxin-b (SRTX-b) extracted from the venom of Atractaspis engaddensis, are considered to be the most potent vasoconstrictors described to date [2,3] These two peptides are 21 amino acids long and stabilised by two disulfide bridges between common cysteines +1/+15 and +3/+11. It has been hypothesised that endogenous maturation by specific endoproteases of the prey, may remove the longer C-terminus extension of SRTX-m, resulting in a toxic effect similar to SRTX-b [6]. To assess this hypothesis, in this study we investigated the in vivo cardiovascular effects of SRTX-b, SRTX-m and SRTX-m−Cter, a C-terminus truncated form of SRTX-m. We investigated global haemodynamic parameters and specific left and right ventricular function parameters

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.