Abstract

Renormalization-group methods provide a viable approach for investigating the emergent collective behavior of classical and quantum statistical systems in both equilibrium and nonequilibrium conditions. Within this approach we investigate here the dynamics of an isolated quantum system represented by a scalar ${\ensuremath{\phi}}^{4}$ theory after a global quench of the potential close to a dynamical critical point. We demonstrate that, within a prethermal regime, the time dependence of the relevant correlations is characterized by a short-time universal exponent, which we calculate at the lowest order in a dimensional expansion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.