Abstract
Accurate wind speed prediction is of significance to improve the ability to coordinate operation of a wind farm with a power system and ensure the safety of power grid operation. According to the randomness and volatility of wind speed, it is put forward that a WD_GA_LS_SVM short-term wind speed combination prediction model on basis of Wavelet decomposition (WD), Genetic alogorithms (GA) optimization and Least squares support vector machine (LS_SVM). Short-term wind speed prediction is carried out and compared with the neural network prediction model with use of the measured data of a wind farm. The results of error analysis indicate the combination prediction model selected is of higher prediction accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.