Abstract
The aim of the present study was to examine the effect of an early stage of streptozotocin-induced diabetes on the mechanism(s) of endothelium-dependent relaxation. Diabetes was induced by a single injection of streptozotocin (48 mg/kg iv), and the ACh-induced relaxation of rat carotid arteries was examined 6 wk later. A diabetes-induced increase in superoxide levels, determined by L-012-induced chemiluminescence, from carotid arteries was associated with endothelial nitric oxide (NO) synthase (eNOS) uncoupling and increased catalytic subunit of NADPH oxidase expression. The sensitivity and maximum response to ACh were similar in normal and diabetic rats despite a decrease in NO release detected by 4-amino-5-methylamino-2',7'-difluorofluorescein. In normal rats, N-nitro-l-arginine (100 microM) plus 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (10 microM), to inhibit NOS and soluble guanylate cyclase (sGC), respectively, abolished ACh-induced relaxation, whereas in diabetic rats, the maximum relaxation to ACh was attenuated (maximum relaxation: 25 + or - 5%), but not abolished, by that treatment. The remaining ACh-induced relaxation was abolished by NO scavengers, cupric chloride (to degrade nitrosothiols), or blockers of endothelial K(+) channels. Western blot analysis of the carotid arteries indicated that diabetes significantly increased the expression of eNOS but decreased the proportion of eNOS expressed as the dimer. These findings demonstrate that in early diabetes, ACh-induced relaxation is maintained but is resistant to NOS inhibition. In early diabetes, nitrosothiol-mediated opening of K(+) channels may act in conjunction with NO stimulation of sGC to maintain endothelium-dependent relaxation despite the increase in vascular superoxide levels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Heart and Circulatory Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.