Abstract

Transportation services play an increasingly significant role for people’s daily lives and bring a lot of benefits to individuals and economic development. The randomness and volatility of traffic flows, however, constrains the effective provision of transportation services to a certain extent. Precise traffic flow forecasting becomes the key and primary task to realize the stability of intelligent transport systems and ensure efficient scheduling of traffic. This paper investigates the application of an ensemble approach based on deep belief networks for short-term traffic flow forecasting. Traffic flow data, collected from the real world, is decomposed into several Intrinsic Mode Functions (IMFs) and a residue with EEMD (Ensemble Empirical Mode Decomposition). Then, for each component, the essential feature subset is extracted by the mRMR (minimum Redundancy Maximum Relevance Feature Selection) method considering weather conditions and day properties. Furthermore, each component is trained by DBN (Deep belief networks) and their forecasting results are summed up as the output of the ensemble model at last. Results indicate that the proposed approach achieves significant performance improvement over the single DBN and other selected methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.