Abstract
The use of renewable energy sources contributes to environmental awareness and sustainable development policy. The inexhaustible and nonpolluting nature of solar energy has attracted worldwide attention. Accurate forecasting of solar power is vital for the reliability and stability of power systems. However, the effect of the intermittency nature of solar radiation makes the development of accurate prediction models challenging. This paper presents a hybrid model based on Kernel Extreme Learning Machine (Kernel-ELM) and Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) for short-term solar power forecasting. The decomposition technique increases the number of stable, stationary, and regular patterns of the original signals. Each decomposed signal is fed into Kernel-ELM. To validate the performance of the hybrid model, solar power data from the BSEU Renewable Energy Laboratory, measured at 5-minute intervals, are used. To validate the proposed model, its performance is compared to some state-of-the-art forecasting models with seasonal data. The results highlight the good performance of the proposed hybrid model compared to other classical algorithms according to the metrics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.