Abstract

SummaryThe changes caused by diesel oil pollution in the metabolically active bacterioplankton from an oligotrophic coastal location were analysed in laboratory microcosms (44 l) using 16S ribosomal RNA (16S rRNA) as molecular marker. The aim was to simulate typical hydrocarbon pollution events in a coastal area exploited for seasonal touristic activities. The experiment consisted in addition of low amounts of diesel oil without nutrients to seawater collected at different times (winter and summer). Bacterial diversity was analysed by terminal‐restriction fragment length polymorphism (T‐RFLP) profiling of 16S rRNAs after reverse transcription polymerase chain reaction (RT‐PCR), and by generation of 16S rRNA clone libraries in control and diesel‐polluted microcosms. Diesel addition caused a twofold increase in prokaryotic numbers in comparison with controls at the end of the experiment, both in winter and summer microcosms. Bacterioplankton composition, determined by 16S rRNA T‐RFLP data, changed rapidly (within 17 h) in response to treatment. The resulting communities were different in microcosms with water collected in summer and winter. A reduction in diversity (Shannon index, calculated on the basis of T‐RFLP data) was observed only in summer microcosms. This was due to the rapid increase of phylotypes affiliated to the Oceanospirillaceae, not observed in winter microcosms. After diesel treatment there was a reduction in the number of phylotypes related to SAR11, SAR86 and picocyanobacteria, while phylotypes of the Roseobacter clade, and the OMG group seemed to be favoured. Our results show that diesel pollution alone caused profound effects on the bacterioplankton of oligotrophic seawater, and explained many of the differences in diversity reported previously in pristine and polluted sites in this coastal area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.