Abstract

Induction of cytochrome P450 enzymes by exposure to polycyclic aromatic hydrocarbons (PAH) can result in both decreased or increased PAH adduct levels. The lung is a main target site for PAH-carcinogenesis. By HPLC determination of B [a]P-r-7, t-8-dihydrodiol, t-9, 10-epoxide (BPDE-I)-DNA adducts in rat, the level of the ultimate carcinogenic B[a]P-metabolite was higher in lungs than in liver. However, measured by immunoassay, the total benzo[a]pyrene (B[a]P)-DNA adduct levels were higher in liver than in lungs. Induction of CYP1A1 in vivo in rat by repeated i.p. doses of methylcholanthrene (MC) prior to a single dose of B[a]P resulted in a 2.4 times increase in CYP1A1 activity in liver tissue and 1.5 times higher levelsof total B[a]P-DNA adducts in lung and liver compared with controls which only received B[a]P. Increased levels of BPDE-I-DNA adducts were significantly correlated to increased CYP1A1 activity in induced lung tissue but not in liver. The times to reach maximum adduct levels were similar for both controls and MC-induced rats in both lung and liver,and plasma albumin. The BPDE-I-albumin adducts reached a maximum level around 1 day after B[a]P exposure and could not be used as a reliable marker of the short term PAH exposure in this study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.