Abstract

Inverter Based Generators (IBGs) have been increasing significantly in power systems. Due to the demanding thermal rating of Power Electronics (PE), their contribution to the system Short Circuit Current (SCC) is much less than that from the conventional Synchronous Generators (SGs) thus reducing the system strength and posing challenges to system protection and stability. This paper proposes a Unit Commitment (UC) model with SCC constraint in high IBG-penetrated systems to ensure minimum operation cost while maintaining the SCC level at each bus in the system. The SCC from synchronous generators as well as the IBGs are explicitly modeled in the formulation leading to an SCC constraint involving decision-dependent matrix inverse. This highly nonlinear constraint is further reformulated into linear form conservatively. The influence of the SCC constraint on the system operation and its interaction with the frequency regulation are demonstrated through simulations on IEEE 30- and 118-bus systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.