Abstract
Agriculture is one of the major economic sectors in Africa, and it predominantly depends on the climate. However, extreme climate changes do have a negative impact on agricultural production. The damage resulting from extreme climate change can be mitigated if farmers have access to accurate weather forecasts, which can enable them to make the necessary adjustments to their farming practices. To improve weather prediction amidst extreme climate change, we propose a novel prediction model based on a hybrid of complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), local mean decomposition (LMD), and artificial neural networks (NN). A detailed comparison of the performance metrics for the short- and long-term prediction results with other prediction models reveals that the three-phase hybrid CEEMDAN-LMD-NN model is optimal in terms of the evaluation metrics used. The study's findings demonstrate the efficiency of the three-phase hybrid CEEMDAN-LMD-NN prediction model in decision-system design, particularly for large-scale commercial farmers, small-holder farmers, and the agricultural index insurance industry that require reliable forecasts generated at multi-step horizons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.