Abstract

Potassium (K) has major biophysical and biochemical functions in plant physiology. However, plant responses to K deficiency at the whole plant level are not always clearly related to these well-known functions of K at the cellular level. The objective of this study was to investigate the morphological response of maize to increasing K deficiency and test to what extent this morphological response can be interpreted in the light of the simple model proposed by Leigh and Wyn Jones, suggesting that biophysical functions are affected first. Maize was grown in a greenhouse under hydroponic conditions. For half of the plants, K was removed from the nutrient solution from the 4th visible leaf stage. The K content in the starved plants dropped from 100 to 30 mM, and was not fully compensated by an increase in other cations. Leaf elongation rates were reduced on K-deprived plants, whereas axile root elongation rates were slightly increased between 45°C days and 75°C days after starvation, and reduced thereafter. During the first part of the starvation period, i.e. under moderate K deficiency (K concentration above 40 mM), all measured variables suggest that the whole plant response may be interpreted as the consequence of the reduced leaf growth, probably due to insufficient turgor pressure or cell-wall extensibility. This general pattern of response is in agreement with the model of Leigh and Wyn Jones. However, during the second part of the starvation period, i.e. under more severe K deficiency (K concentration below 40 mM), malfunction of additional physiological processes (mostly related to biochemical functions like photosynthetic processes) must be considered to explain the plant morphological response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.